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ABSTRACT

Cover song identification in Music Information Retrieval

(MIR), and the larger task of evaluating melodic or other

structural similarities in symbolic musical data, is a sub-

ject of much research today. Content-based approaches to

querying melodies have been developed to identify similar

song renditions based on melodic information. But there

is no consensus on how to represent the symbolic melodic

information in order to achieve greater classification accu-

racy. This paper explores five symbolic representations and

evaluates the classification performance of these encodings

in cover song identification using exact matching of local

sequences. Results suggest the more lossy encodings can

achieve better overall classification if longer melodic seg-

ments are available in the data.

1. INTRODUCTION

The landscape of todays digital music exploration paradigm

has shifted greatly in recent years, and will likely continue

to change. With the growth in popularity of subscription-

based collections, people are discovering and consuming

music in vast and varied ways on a number of devices and

platforms. With such an increase in access, there is greater

demand for users to explore, interact with, and share mu-

sic. To this end, there is continued demand for novel and

efficient ways to index, retrieve, manipulate, etc. digital

music.

Symbolic melodic similarity, as a content-based approach

to MIR, can be considered a sub-discipline of music sim-

ilarity. The goal of melodic similarity is to compare or

communicate structural elements or patterns present in the

melody. Where vast efforts towards music discovery and

recommender systems have historically focused on music

similarity, by employing low-level feature extraction and

clustering or other classification schemes, there has been

comparatively less focus on melodic similarity. Many ap-

plications of similarity analysis for title retrieval, genre

classification, etc., do not require the additional effort to

process and interpret melodic content. Instead, relying on

timbral descriptors, tags, etc. is considerably more ef-

ficient, and can often achieve equal if not better perfor-

mance. However, there are numerous applications of dig-
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ital musical analysis that cannot be performed without ex-

ploring the melodic content directly.

Symbolic melodic similarity research can be largely cat-

egorized into monophonic and polyphonic melodies, and

into sequence similarity, or harmonic/chordal similarity.

Melodies are often extracted from MIDI, MusicXML, or

other digital music transcription formats, into representa-

tions such as: vectors, contours, text or numerical strings,

or graphs. While considerable efforts have been made to

create and evaluate melodic similarity measures with dif-

ferent symbolic representations, there has been little atten-

tion paid to the behaviours of these approaches with differ-

ent representations.

This article explores the behaviour of local exact match-

ing of melodies with five symbolic representations of vary-

ing information. The lengths of the local matches are used

to perform cover song identification, and their classifica-

tion performance is discussed.

2. LAKH MIDI DATASET

2.1 Preprocessing

The Lakh MIDI dataset was acquired for use in this re-

search. There are many varieties of the Lakh dataset; in

particular, this work employs the Clean MIDI subset, which

contains MIDI files with filenames that indicate both artist

and song title [1, 2]. MIDI files were scraped for track

info, and any tracks titled “Melody” were parsed to ac-

quire the melodic information. Any melody that contained

two notes overlapping for greater than 50% of their dura-

tion was considered polyphonic, and was discarded. All

remaining monophonic melodies were transcribed to text,

including artist, song title, tempo, meter, and all melodic

information (i.e. notes and durations).

Key signature data from MIDI files is unreliable. Con-

sequently, key signatures were estimated for each melody

using the Krumhansl-Schmuckler key-finding algorithm,

which uses the Pearson correlation coefficient to compare

the distribution of pitch classes in a musical segment to an

experimental, perceptual “key-profile” to estimate which

major or minor key a melody most closely belongs to [3].

The Krumhansl-Schmuckler algorithm works well for melodic

segments or pieces that do not deviate from a tonal center;

however, pieces that modulate or shift keys will affect the

accuracy of the algorithm.

Deduplication was first handled in the original Lakh dataset,

where MD5 checksums of each MIDI file were compared,

and duplicates were removed. This approach is quite ro-

bust but unfortunately still requires further deduplication.
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Since MIDI file or track names, or other meta data can be

altered without affecting the melodic content, a further step

to compare the transcribed melodies and remove duplicates

was applied. This ensured that while cover songs with the

same or a different artist and same song title were permit-

ted, their transcribed melodies could not match identically.

In total, 1,259 melodies were transcribed, which gives

793,170 melodic comparisons. Of these melodies, the short-

est was 14 notes long and the longest was 949 notes long.

Within the 1,259 melodies, there were 106 distinct songs

that had one or more corresponding cover(s) in the dataset.

In total there were 202 covers present in the dataset.

2.2 Ground Truth Cover Songs Data

Using the transcribed melodies dataset, a bit map was cre-

ated to annotate which melodies were covers or renditions.

No consideration was given to which melody was the orig-

inal work and which was the cover. The bit map was con-

structed such that an annotation of 1 indicated the melodic

comparison was between two covers, and 0 indicated the

melodies were unique (i.e. non-covers). Melodies were

annotated as covers if they had the same song title and

artist name, or the same song title and a different artist.

Duplicate song titles by different artists were individually

inspected to identify if they were genuine covers or unique

songs.

3. MELODIC ENCODINGS

Melodies were encoded into five different symbolic repre-

sentations of varying information loss. These encodings

are: Parsons code, Pitch Class (PC), Interval, Duration,

and Pitch Class + Duration (PCD). Parsons is a contour

representation that ignores any intervalic or rhythmic infor-

mation and only expresses the relationship between notes

as {Up,Down,Repeat} = {0, 1, 2}. PC notation de-

scribes notes belonging to one of 12 unique pitch classes:

{C,C], ..., B} = {0, 1, ..., 11}. The Interval representa-

tion encodes each note by its intervalic distance from the

previous note (e.g. C " G = +7, B # G] = �3). Inter-

val encoding does not apply modulo operations by octave

in either the positive or negative direction (i.e. intervals

greater than ±12 are permitted). Duration encoding ig-

nores all melodic information and alphabetizes notes based

on their quantized duration. Notes were quantized down to

32

nds

using Eq. (1), where d
i

is the duration of the note, tpb
and met are the ticks per beat and time signature meter of

the MIDI file, and |⌃| is the size of the encoding’s alphabet

(i.e. |⌃| = 128 for Duration).This provides 128 possible

durations up to a maximum duration of 4 bars at

4
4 time.

Tuples were not supported, and compound signatures were

reduced to simple time signatures before quantization.

q
i

=

�
d
i

tpb⇥met
⇥ |⌃|

4

⇡
=

�
d
i

tpb⇥met
⇥ 32

⇡
(1)

PCD encodes both duration and pitch class information

by combining the alphabets of each encoding. Values [0, 127]
represent all possible durations of pitch class C, [128, 255]

are all possible durations of C], and so on. Figure 1 il-

lustrates the PCD encoding. Both PC and PCD encodings

use absolute representations of pitch values, as opposed

to relative (e.g. interval). In order to compare melodies

accurately, they were transposed to the same key, or the

harmonic major/minor equivalent, prior to comparison.

Figure 1. Examples of the Pitch Class Duration Encoding

Alphabet

4. EXACT MATCHING FOR MELODIC
SIMILARITY

Evaluating melodic similarity by solving for local exact

matches between musical segments often involves solving

the Longest Common Substring (LCS) problem. The LCS

solves for the longest string(s) that are a substring of two

or more input strings. In the context of this work, melodies

are encoded into strings and then compared by solving the

LCS. There are two common approaches to solving the

LCS: generalized suffix trees, and dynamic programming.

This work employs suffix trees because of their computa-

tional efficiency.

A suffix tree is a compressed trie that represents all pos-

sible suffixes of a given input string [4]. The keys store the

suffixes and the values store the positions in the input text.

Constructing suffix trees was done using Ukkonen’s algo-

rithm, which constructs a suffix tree in O((n +m)) time,

where n and m are the lengths of the two input strings [4].

Similarly, the LCS can be solved in O((n + m)) time by

traversing the suffix tree.

Generalized suffix trees (GST) are created for a set of in-

put strings as opposed to a single string. The input strings

are each appended with a unique character, and then con-

catenated together to form one aggregate input string. In

this work, each pair of melodies being compared were used

to create a GST to solve for the LCS of the two melodies.

Once constructed, the GST is traversed to annotate nodes

as X for suffixes belonging to the first melody, Y for suf-

fixes belonging to the second melody, and XY for suffixes

common to both melodies. The path from root to the deep-

est XY node represents the LCS. Figure 2 shows the GST

of input strings “ABAB” and “BABA”, such that the con-

catenated input string is “ABAB$BABA#”. Paths denoting

substrings “ABA” and “BAB” are both solutions to the LCS.

5. SEQUENCE COMPLEXITY

Shannon entropy measures the average amount of informa-

tion generated by a stochastic data source, and is calculated

by taking the negative logarithm of the probability mass

function of the character or value [5]. Shannon entropy is

given by H in Eq. (2) where b is the base of the logarithm

and p
i

is the probability of a character number i occurring
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Figure 2. Annotated Generalized Suffix Tree for Input

String ABAB$BABA# to solve for the LCS

in the input string [6]. In this work, b = 2, such that the

units of entropy are bits.

H = �
nX

i=1

p
i

log

b

p
i

(2)

Shannon entropy establishes a limit on the shortest possi-

ble expected length for a lossless compression that encodes

a stream of data [5]. For a given input string, when a char-

acter with a lower probability value occurs, it carries more

information than a frequently occurring character. Gener-

ally, entropy reflects the disorder or uncertainty in an input,

and is used in this work as an approximation to the com-

plexity of an encoded melodic segment.

All non-cover song melodies (i.e. unique) were traversed

with a sliding window to calculate the average entropy for

a given window length. Figure 3 shows the average en-

tropy, H , as a function of window length for each of the

five melodic encodings. The encodings with the smallest

alphabet plateau at the lowest average entropy, whereas the

encoding with the largest alphabet grows toward a much

larger average entropy value.

Figure 3. The average entropy, H of unique melodic seg-

ments as a function of window length

From the cover songs dataset, the exact matches for each

melodic comparison were transcribed for all encodings.

All match segments were categorized by their length to

compute the average entropy by match length for each of

the five encodings. Figure 4 shows the average entropy, H ,

of the exact match melodic segments as a function of their

match length.

Figure 4. The average entropy, H of exact match melodic

segments as a function of match length

Interval encoding achieves the greatest average entropy

at a match length l = 3, and Parsons has greater average

entropy values for the longer melodic segments (i.e. l >
5). PCD exhibits the lowest average entropy for nearly all

match lengths. This may suggest that while larger alphabet

encodings can preserve more information, exact matching

techniques such as solving the LCS often discover short,

repeating patterns, of comparatively low complexity.

6. COVER SONG IDENTIFICATION

6.1 Binary Classification

Binary classification is the technique of classifying the el-

ements of a given set into two groups on the basis of a

predicting or classification rule [7]. In the context of cover

song identification, we are interested in identifying which

melodies are unique and which are covers. With the ground

truth annotated data, we can set a threshold for the length

of the LCS between two melodies to predict whether they

are unique or covers. Melodies with a LCS shorter than

this threshold are predicted to be unique, whereas melodies

with a LCS of this length or greater are predicted as cov-

ers. A confusion matrix, shown in Table 1 illustrates the

four possible outcomes of these predictions: true positive

(tp), false positive (fp), true negative (tn), and false neg-

ative (fn).

The Receiver Operating Characteristic (ROC) curve and

the Area Under the Curve (AUC) score are commonly used

in binary classification to represent the quality of an auto-

matic classification scheme or rule [8]. The ROC curve

plots the True Positive Rate (TPR) against the False Pos-

itive Rate (FPR) at various classification thresholds. TPR

and FPR are calculated using Eq. (3) and Eq. (4) respec-

tively. The further the curve deviates from the diagonal

midline (i.e. extending from (0, 0) to (1, 1)), the better the
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Actual

Predicted

p n

p0 true

positive

false

negative

n0 false

positive

true

negative

Table 1. Confustion Matrix for Binary Classification

Scheme

quality of the classifier, assuming the positive prediction is

more desired than the negative prediction.

TPR =

tp

tp+ fn
(3)

TPR =

fp

tp+ tn
(4)

The AUC score is a normalized measure of the predictive

quality of a classifier. An area of 1 represents a perfect

classifier, and an area of 0.5 implies the classifier is no

better than random guessing.

6.2 Classification Performance

The five melodic encodings were used to compare all melodies

against each other to solve for the LCS in every compari-

son. The lengths of the exact matches were used to predict

if the two melodies being compared were covers or unique

songs. Figure 5 shows the ROC curves for the five melodic

encodings for all exact match length thresholds.

Parsons is the most lossy encoding (i.e. preserves the

least information) but achieves the greatest AUC score of

all the encodings. The PCD encoding preserves the great-

est amount of information of all the encodings and achieves

the lowest AUC score. It is notable that while PC is the

second-most lossy encoding, its AUC score is lower than

Interval and Duration, both of which have considerably

larger alphabets and preserve more information. The poor

performance of PC and PCD encodings may be due in part

to some inaccuracy in the key-finding algorithm; however,

it is unlikely these encodings would perform notably better

with a perfect key-finding algorithm.

The top left corner at position (0, 1) of the ROC plot rep-

resents the perfect classification scheme, with a TPR of

100% and a FPR of 0% [9]. One common approach to se-

lecting a classifier threshold in practice is to identify the

point on the curve closest to (0, 1). Table 2 shows the

closest point on each of the five encodings’ ROC curves

to (0, 1), and the exact match threshold at this point. There

are circumstances where a greater emphasis on TPR or

FPR may be desired, and so a trade-off can be made by

selecting a threshold that better suits the application of the

Figure 5. Receiver Operating Characteristic for the five

melodic encodings using exact matching

classifier. The ability to select the classification thresh-

old for a desired performance is an important aspect of the

ROC curve.

Encoding FPR TPR Dist. to
(0, 1)

Ex. Match
Length

Parsons 0.028 0.894 0.109 14

Pitch Class 0.043 0.746 0.258 9

Interval 0.005 0.847 0.153 13

Duration 0.159 0.839 0.226 8

PC+Duration 0.147 0.763 0.279 4

Table 2. Closest points on ROC Curves for Each Melodic

Encoding and the Corresponding Exact Match Length

Threshold

7. CONCLUSIONS

In this work, the behaviour of local exact matching as a

measure of melodic similarity is applied to melodies en-

coded with five symbolic representations of varying in-

formation. Generalized suffix trees were used for each

melodic comparison to solve for the longest common sub-

string between two melodies. The lengths of these local

exact matches were used to predict cover songs in a dataset

of both unique and cover song melodies.

Parsons code achieves the best overall classification per-

formance at any exact match length threshold, and it is

most discriminant at an exact match length threshold of

14. Large alphabet encodings such as PCD achieve poorer

classification performance. Results suggest lossy encod-

ings such as Parsons, achieve their best classification rates

with longer exact match lengths than encodings that pre-

serve more information.

The average entropy of unique melodies in the dataset

grows with the window length of the melodic segment,

and with the size of the alphabet of the encoding. The
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average entropy results from the exact matches of cover

song melodies suggests encodings that drive higher com-

plexity exact matches are beneficial; however, ultimately

the longer melodic segments are better at differentiating

cover song melodies from unique song melodies.

In future work we would like to explore the effects of

more granular quantization on the Duration and PCD en-

codings. A non-repeating contour representation should

be compared to Parsons to illustrate the effects of repeat-

ing notes in exact matching and to determine if even lossier

symbolic representations can achieve as good or better clas-

sification performance. It would be advantageous to com-

pare Shannon entropy results to a practical approximation

of Kolmogorov complexity such as one or more lossless

compression algorithms. Lastly, an investigation of com-

plexity and classification performance with inexact match-

ing similarity measures, such as edit distance, could illumi-

nate the benefits and drawbacks of the faster exact match-

ing approach.
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