
AUDIO-TO-MIDI SIMILARITY FOR MUSIC RETRIEVAL

Fábio Goródscy
University of São Paulo
fabiog@ime.usp.br

Shayenne Moura
University of São Paulo

shayenne@ime.usp.br

Marcelo Queiroz
University of São Paulo
mqz@ime.usp.br

ABSTRACT

Finding similar aspects in sound recordings is a great con-
cern in automated music analysis applications. In this pa-
per, we are seeking to measure how well can state-of-the-
art melody-extraction algorithms be used in creating ab-
stractions of single-voiced audio recordings for querying.
Having as motivation the development of a query-by-hum-
ming application, we created experiments where we com-
pared the performance of features automatically extracted
from wav recordings, along with its ground-truth directly
calculated from MIDI files. Lastly, we discuss results show-
ing that pitch interval representations ignoring time infor-
mation can preserve some discrimination capability. The
aim is to explore the limits of less informative data rep-
resentations that may help deciding between comparing
audio-to-MIDI or audio-to-audio in query-by-humming ap-
plications.

1. INTRODUCTION

Retrieving music from a dataset is a common task nowa-
days. People listen to music and they usually want to re-
member names of songs that linger on their memory. How-
ever, much time and effort may be spent to find one specific
version of a song. Frequently, a user is unable to remember
the lyrics, the artist or any other common meta-data from
the music she/he is looking for; in such cases the only re-
source available is to hum the melody that is present in
their memories.

This yields an important problem in Music Information
Retrieval: to search within a dataset using only hummed/sung
queries. It is necessary to transform the record into a rep-
resentation that could be matched with the stored data in
order to retrieve efficiently the correct music to the user.

Recovering information based on sung queries has two
main challenges: codification of the information, and sim-
ilarity criteria. There are works as Tararira [1] that focus
on the note’s pitch and duration to construct the codifica-
tion and use this information to find similar items in a data-
set. One algorithm that uses this kind of symbolic informa-
tion is the SMBGT [2], a subsequence matching framework
that allows gaps on queries and targets, where you can con-
trol parameters (variance tolerance levels, maximum match

Copyright: c� 2018 Fábio Goródscy et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

length and minimum number of matched elements) to im-
prove the retrieval.

Another approach is to use the fundamental frequency
line of melody to match with the target’s melodic line.
In the Follow That Tune system [3], a modified DTW has
been used in order to calculate the alignment between query
and targets. Using a modified representation to summarize
melodic information, Salamon [4] has built a retrieval algo-
rithm using the Q

max

algorithm to compute fitness values
and rank targets in a dataset (by sorting them in decreasing
fitness order).

This paper deals with the problem of searching hummed
queries within a dataset that uses MIDI representations.
For reliability of the methods and algorithms, we used dif-
ferent audio to MIDI transcription systems (Melodia [5]
and ASyMuT [6]) and we are concerned to make the eval-
uation of their performances using a custom-made version
of the SMBGT algorithm. In addition, we discuss the al-
gorithm limitations using this kind of representation, com-
paring the human recognition of the humming record and
MIDI representation.

The article is organized as follows: section 2 brings a
brief introduction of relevant concepts that allows the au-
tomatic comparison of melodic information. Section 3 de-
scribes the database, the feature extraction and the match-
ing algorithms. Section 4 describes the evaluation using
two different audio to MIDI transcriptions. The results are
discussed in section 5.

2. CONCEPTS

2.1 MIDI transcription

The process of automatically transcribing audio represen-
tations of hummed sounds into symbolic versions, such as
MIDI, has been explored for years, and is far from being
a closed problem. Nevertheless, people usually follow a
similar strategy when working in this task, which we will
describe in this section.

The first step for MIDI transcription is converting the au-
dio signal into some feature space that highlights funda-
mental frequencies of the voiced segments in the audio sig-
nal. This is a temporal series of fundamental frequencies
that can be easily converted to a pitch sequence, which is
the expected output for this task. This step is less con-
troversial and it is mostly solved for monophonic record-
ings, even though for polyphonic signals it is still very
challenging. ASyMuT [6] is a system designed for tran-
scribing monophonic recordings; this algorithm creates the
pitch vector by analyzing the spectral representation of the

Proceedings of the 11th International Conference of Students of Systematic Musicology

29



Figure 1: A pitch vector (orange) automatically extracted
from a hummed query, aligned against its MIDI database
version (blue).

audio, looking for harmonic series of spectral peaks with
maximal sum. Melodia [5] is designed for polyphonic sig-
nals, although it also works for monophonic signals. It has
a behavior similar to ASyMuT, but it takes an extra step
of evaluating the pitch candidates evolution in time, dis-
carding extraneous pitch jumps. Figure 1 shows the results
from this step.

The second step in MIDI transcription takes pitch vectors
anc converts them into a sequence of discrete events, each
one with specified pitch and duration, in a format simi-
lar to that of a MIDI file (that uses note on/note off

events). This is the most challenging step, and there is no
simple setting of the transcription algorithms that is always
guaranteed to produce good results. A common pipeline
for this task is to smooth the pitch vector, making jumps
and fluctuations in instantaneous frequency less intense.
This smoothing step is usually done by digital filters; how-
ever, choosing the right filter is hard and the most appro-
priate filter may vary for each recording, which is part of
the challenge for this step. After obtaining the smoothed
pitch vector, the pitch values can be rounded to the closest
integer MIDI note. The last step is to find groups of MIDI
notes that meet certain criteria (e.g. minimum duration).
The final transcription is then similar to figure 2.

2.2 Interval representation

Absolute pitch values, or MIDI note values, are valuable
for comparing recordings and for trying to find one specific
record within a database. In order to introduce a degree of
tolerance in the comparison of versions and melody con-
tours, one solution is to consider the differences of con-
secutive pitch values, or intervals; intervals can lead to
better contour matching by allowing tonal independence.
One question that still has to be considered regards octave
equivalence: frequently the representation of symbolic se-
quences can be simplified to allow only 12 pitch classes
(integers between 0 and 11) instead of absolute pitch val-
ues, and also pitch class intervals instead of absolute inter-
vals.

2.3 Time Series Matching

Ultimately, what we obtain is a sequence of timestamped
events. There are various approaches for the alignment of
two such sequences. One of these approaches is broadly

Figure 2: Final transcription after smoothing, rounding,
and removing short duration notes from a pitch vector.

used when building query-by-humming applications, the
Dynamic Time Warping [7]. It is the default approach
when comparing pitch vectors of dissimilar lenghts, and
is one of the best approaches for query-by-humming when
trying to maximize the recall and MRR of the results, ac-
cording to Salamon et al. [8]. Even though DTW has sev-
eral advantages, such as its retraceability 1 , it is not easy to
adjust it to the interval representation, because the database
intervals generated from the pure symbolic representation
have a completely different structure than the intervals ob-
tained by automatic transcription from the audio recording.
Thus, we used another matching approach, the SMBGT
algorithm [2], which is also a dynamic programming algo-
rithm for matching sub-sequences.

The representation used and the matching algorithm have
minor overall modifications compared to [2]. The SMBGT
follows these steps: a sub-sequence A is compared element
by element to a sub-sequence B, a matrix is calculated by
placing 0 plus the last position of the matrix whenever a
element is considered different (i.e. does not satisfy a pre-
established condition) or 1 plus the last position of the ma-
trix whenever it is considered equal. The algorithm has
a parameter for resetting the cell score whenever it hops
through a number of different cells without finding a equal
element. The final score for the comparison of the two se-
quences is the highest value over the whole matrix, usually
divided by the size of the smaller sequence, as this reflects
the percentage of the longer equal sequence.

3. EXPERIMENT

3.1 Database

We considered the database that has been used in the MIREX
annual competition (Music Information Retrieval Evalua-
tion eXchange) for our experiments. It consists of 4431
WAV recordings of hummed queries, sampled at 8kHz.
The queries were gathered through a period of 7 years, and
include 195 participants and 48 songs (not all participants
recorded every song in the set). This database of queries
is processed and matched against a MIDI database that in-
cludes the same 48 songs among other 8474 MIDI songs
from ESSEN folk music database. These 8474 extra songs
were not hummed by the participants, thus they are used

1 where we can find the exact sub-sequence that has been automatically
matched to the input sequence

Proceedings of the 11th International Conference of Students of Systematic Musicology

30



solely for the purpose of making the music retrieval task
harder.

3.2 Feature extraction

The feature extraction algorithm works similarly to what
has been described in section 2. All WAV queries are first
processed for F0 determination within segmented audio
frames. This gives an F0 temporal series that are later used
for smoothing and approximating MIDI note values, and
finally to create MIDI files. The MIDI file is used for find-
ing intervals of two consecutive notes, yielding a sequence
of intervals, which is the representation used in this ex-
periment. We used two different implementations for this
task, both of which are freely available in the Internet at
the time of writing. The first one is based on Melodia [4]
and its code can be found online 2 . The other implementa-
tion used was ASyMuT [6], and its code can also be found
online 3 . The transcription steps are illustrated in figure 3.

3.3 Matching

Symbolic representations, such as those resulting from hummed
transcriptions and MIDI re-encoding, reduce the complex-
ity of the original melody. We need similarity measures
that may be used to compare such simplified representa-
tions and the database MIDI files. For this task we used the
SMBGT algorithm, which is a dynamic programming ap-
proach for the problem of comparing two sub-sequences,
which was proposed within the context of a query-by-humming
application [2].

MIDI transcriptions from each WAV file in the dataset
are matched against every MIDI contained in the reper-
toire dataset. Therefore, each WAV receives 8522 similar-
ity scores, from which a list of 10 top matches are kept. In
this way, we expect to find not only the exact match, but
other pieces with high melodic similarity compared to the
hummed query. Even though it would be desirable, it is
not reasonable to expect that the desired song is always in
the first position of this list, because the tolerance added to
the matching algorithm introduces ambiguities that result
in high scores for many other melodies besides the ground-
truth.

4. EVALUATION

Our evaluation proposal has been aimed at measuring how
well the proposed method performs in trying to keep the
ground-truth result among the 10-highest-scoring MIDI files.
This would give us a hint on the system’s ability to iden-
tify that a hummed melody matches part of a file in the
dataset. For this purpose, we have taken the recall of the
ground-truth belonging to the list of the 10-highest-scoring
melodies. Additionally, we use the mean reciprocal rank
(MRR) to find out how frequently the exact match appears
in first position. Even though those measures might be seen
as “quality” or “capability” of the system in giving the ex-
pected answer, we rather look at then as characteristics of

2
https://github.com/justinsalamon/audio_to_

midi_melodia

3
https://github.com/adrianomitre/asymut

Smooth Recall MRR Mean Position
0.05 4% 0.02 38.52
0.01 32% 0.23 4.35
1.0 6% 0.02 84.01

Table 1: Values for Melodia transcription.

Smooth Recall MRR Mean Position
0.064 32% 0.19 5.13
0.128 13% 0.06 16.51

Table 2: Values for ASyMuT transcription.

the method. This way, the goal is not to achieve high recall
and MRR measures, but to describe what kind of music
result it is retrieving.

Recall calculation is made by counting the number of
times that ground-truth MIDI appears in the list of results,
divided by the total number of queries in the dataset; i.e.,
recall will be 1 if every expected MIDI is returned by the
system, 0.5 if half of them are retrieved, or 0 if no correct
MIDI is found. MRR can be seen as the harmonic mean
of the positions of the ground-truth in the retrieved list for
each query; i.e. MRR will be equal to recall if every cor-
rect answer appears in first position, half the MRR if every
answer is in the second position, and so on.

An important consideration regarding these metrics is their
relationship to the quality of the transcription of the WAV
files. The transcription algorithms have parameters for defin-
ing smoothing levels, which makes transcriptions more ac-
curate or more tolerant to F0 deviations; setting these pa-
rameters to extreme values affects the transcription quality
and the recall and MRR metrics, as can be seen in tables 1
(for MIDI transcriptions using Melodia) and 3 (for MIDI
transcriptions from ASyMuT).

Furthermore, the choices of parameters for the matching
algorithms also lead to changes in recall and MRR values.
In the SMBGT algorithm we have explored the parameter
controlling the different sizes of gaps allowed within sub-
sequences. In our experiments, recall ranged from 34.5%
to 37.0% for any combination of gaps, which means that
optimization of this parameter could lead to only 2.5% im-
provement of recall, so that even though there is room for
improvement, its impact is not considerable.

Another important point was to choose the representa-
tion that would be used for matching. We have tried to
use rhythmic information from the automatic MIDI tran-
scriptions. For comparison, we used as baseline a random
classification, based on random MIDI similarity values ir-
respectively of the file contents. The algorithms that we
used focused in keeping melodic information despite of
rhythm information loss, which made our rhythmic tests
always achieve very poor recall values, being in the range
between 13% and 17%.

Proceedings of the 11th International Conference of Students of Systematic Musicology

31



(a) Spectrogram (b) Pitch vector

(c) Dataset (d) Extraction

Figure 3: Steps of algorithmic transcription in our approach. a) Spectrogram of a hummed query. The strong lines in the
bottom are captured by the F0-extraction algorithm. b) Result of F0 extraction. It has a similar shape to the strongest line
of the spectrogram. c) MIDI file as seen in database. d) MIDI created from pitch vector.

Interval type Recall MRR Mean Position
Regular 38% 0.23 4.29
Pitch classes 37% 0.23 4.33

Table 3: Recall and MRR values for different interval rep-
resentations.

5. DISCUSSION

In an ideal world, a query-by-humming application would
approach the behavior of the human cognition with respect
to melodic similarity. As far as we have gone into this
experiment, this idealized goal is not within reach by the
methodology here described. One alarming behavior of the
framework described is that it will frequently bring results
that no human would classify as similar, for most of the
queries. Furthermore, melodic similarity values will usu-
ally not indicate clearly what the correct answer is; there
is always a high degree of confusion among competing
MIDI files. Another problem of this methodology is that
the transcription algorithms usually shorten sung notes, of-
ten because the moment of attack or release, or the period
of transition between notes, makes the algorithm unsure of
the pitch value in those moments and they tend to be dis-
carded. But this note shortening makes it hard to define
the parameter controlling the minimal duration for notes,
because this choice would not be based on the actual prob-
lem (i.e. based on real data it would be good enough to

set it to between 0.5s and 0.1s), but it would be influenced
by the computer representation and the transcription errors
introduced in the F0-extraction.

Regarding the choice of using absolute pitch values, pitch
classes or intervals, it might be better to use the full abso-
lute pitch vector, even though it incurs in a higher com-
putation cost. Moreover, audio-to-audio alignment might
also be an alternative to consider, if a matching strategy is
defined to account for the fact that the query is tipically
monophonic whereas the music database would be poly-
phonic (i.e. the hummed query should be aligned to the
most prominent melody within the polyphonic texture).

6. CONCLUSIONS

In this paper, we considered the problem of retrieving a
song from a dataset using MIDI representations calculated
from hummed queries. We described the main concepts
related to this task, particularly the transcription step and
the SMBGT matching algorithm. We gave details of our
experiments and discussed their results. Finally, we dis-
cussed some aspects relating this kind of representation to
the human perception of melodic similarity, highlighting
difficulties we have found. Lot of effort has been spent
over this task, still it is not marked as completed. Further-
more, approaching human cognition with computers will
always be complicated, and this task is a closely related to
listening cognition.

Proceedings of the 11th International Conference of Students of Systematic Musicology

32



Acknowledgments

The first two authors acknowledge the support by CNPq
and SEMPRE: Society for Education, Music and Psychol-
ogy Research.

7. REFERENCES

[1] E. López, M. Rocamora, and G. Sosa, “Búsqueda de
música por tarareo,” 2004.

[2] A. Kotsifakos, P. Papapetrou, J. Hollmen, and
D. Gunopulos, “A subsequence matching with gaps-
range-tolerances framework: A query-by-humming
application,” 2011.

[3] B. Stasiak, “Follow that tune – adaptive approach
to dtw-based query-by-humming system,” ARCHIVES
OF ACOUSTICS, vol. 39, no. 4, p. 467–476, 2014.

[4] J. Salamon, E. Gómez, D. P. W. Ellis, and G. Richard,
“Melody extraction from polyphonic music signals:
Approaches, applications and challenges,” IEEE Sig-
nal Processing Magazine, In Press (2013).

[5] J. Salamon and E. Gómez, “Melody extraction
from polyphonic music signals using pitch contour
characteristics,” IEEE TRANSACTIONS ON AUDIO,
SPEECH, AND LANGUAGE PROCESSING, 2012.

[6] A. Mitre and M. Queiroz, “Um sistema automático de
transcrição melódica,” 2005.

[7] M. Müller, Fundamentals of Music Processing: Audio,
Analysis, Algorithms, Applications, 2015.

[8] J. Salamon, J. Serrà, and E. Gómez, “Tonal represen-
tations for music retrieval: from version identification
to query-by-humming,” Int. J. of Multimedia Info. Re-
trieval, special issue on Hybrid Music Info. Retrieval,
vol. 2, no. 1, pp. 45–58, Mar. 2013. [Online]. Avail-
able: http://dx.doi.org/10.1007/s13735-012-0026-0

Proceedings of the 11th International Conference of Students of Systematic Musicology

33


