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ABSTRACT

Music visualization always helped musicologists to ana-

lyze musical pieces. Traditionally, there are a few music

visual formats that are standards and broadly used. Since

computers started helping music analysis, several formats

arose to represent music in a digital format. In this paper

we propose three forms of music representation that can

create visual feedback that is different from common mu-

sic visualization. Our approach can bring some discussion

about how different visual feedback can help musicians to

understand a musical piece. This music representation is

not concerned to be a better format but it is focused in aes-

thetics results that can provide alternative visualizations to

musicians.

1. INTRODUCTION

Musicology uses the ears and the eyes to analyze music for

centuries, and since the 1960’s it is possible to use comput-

ers to aid this task. The first experience to automatically

extract data from music, to analyze it with a computer,

started with the researcher creating a music representation

to use it as computer input, and using the computational

power to compare data to analyze music [1]. In this work, it

is presented a brief discussion about musical data represen-

tation with punch cards and the concern about how it could

be easy to share musical data between research centers us-

ing a common music notation format. Since there were

no music file formats in that age, they created a symbolic

music notation to define music instructions that was called

MIR (Music Information Retrieval) format [1]. Since then,

it started a field to extract musical information, like style

analysis, aided by computers [2].

Time passed and nowadays we have several different mu-

sic file formats. From symbolic music (that stores events

and notations) to audio files, passing by visual scores stored

as images, and also text meta-data about music stored in

catalogs. All these informations and file formats can be

used to represent music in the computer and consequently

can be used to extract informations about music [3]. Based

on these formats, different tools to musicology arose us-

ing music representation and helping musicians on musical
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analysis, for instance JRing [4], Open Music [5], and Mu-

sic 21 [6]. Also, there are huge databases available online

with music files in different formats that can be used to ex-

tract information about music using statistics and machine

learning techniques.

It is important to notice that different tools for music anal-

ysis can accept different file formats. The necessity of

having different music representation happens because the

kind of information that can be extracted from one format

is different from the information extract from other for-

mat, and they can be complementary to help understand a

composition or a musical piece. Some of them uses audio

analysis while other uses symbolic music, for instance.

There are also the possibility to convert one music rep-

resentation format into other format changing the music

information point of view. Depending on how it is stored,

it is feasible to edit, transpose, move, copy, and compare

musical data. Also, it can be used to perform statistical

analysis and plot graphics, and so on [6].

2. DATA SONIFICATION

A field that is not directly related to musicology but is also

focused in transforming virtual musical content from one

format to other is the so-called sonification. Classically, a

goal of sonification is to transform complex multidimen-

sional data into intuitive audio [7] as in text-to-speech or

accessibility tools. Alternatively to this classic goal, it

is possible to use sonification to create purely aesthetic

sounds that can be used to inspire compositional process

or just to be enjoyed by users [8].

Using this alternative approach of sonification, the web

became a huge repository of data like text, images and web

pages to be sonified and tried out as sonic elements (for

instance, to compositional purposes or to performances).

The process of sonifying data (such as HTML, image, and

text) has some similarities with the process of synthesize

symbolic music or even play audio files. Nonetheless, while

traditional music notation formats, like MIDI, ABC or Mu-

sicXML has canonical sound mappings, other data types

that does not have musical semantics need some aesthetic

mappings to be played as music. Thus, using appropriated

mappings it is possible to convert any data file to music

information and listen to it.

Since the universe of mapping can be infinite and we can-

not try every possibility to map web data information into

music, some rational decisions can be taken to help this

mapping process. A text can be sonified like ABC files

or Lylipond format, where a character (or a group of) is

mapped to a set of musical commands. The HTML file
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format is similar to MusicXML since they are both hierar-

chical formats, and their structure can be mapped to music

structure. Lastly, BMP images can be converted to WAVE

files where the bytes of the audio samples are the bytes of

the image pixels. A work presenting this sonification can

be found in [9], including some sonification tools that cre-

ate sounds from web pages, image files, and snippets of

text, data that are not musical but that have similar struc-

tures with some digital musical formats.

3. FROM DATA SONIFICATION TO MUSIC
VISUALIZATION

The set of mappings used in the sonification process has an

interesting feature: they have well-defined inverses. These

inverse mappings can be used to generate data files from

music information as alternative representations for songs,

such as a piano roll representing the list of MIDI events.

One can convert two songs to text and look for the longest

common subsequence between them to detect some melody

similarity, or can convert one song to an image and detect

repeated visual patterns in order to segment such music,

and so on. Thus, these visual representations can be use-

ful for music visualization, creating new possibilities and

different approaches to music analysis.

What kind of web pages can we achieve using a MIDI

score as HTML page structure? What kind of visual feed-

back can be reached using an audio file plotted as a bi-

dimensional image? What kind of text we can get generat-

ing from a MusicXML score? These questions leaded the

results of this research.

3.1 From score to HTML

When working with HTML sonification we did the map-

ping of seven CSS properties (width, height, top, left, padding,

margin, border-width) to four synthesizer parameters (pitch,

duration, dynamics, onset). The mapping functions were

all linear: synthProperty = a ⇤ cssProperty + b. So,

they have inverses in the following format: cssProperty =

c ⇤ synthProperty + d, where c =

1
a

, d = � b

a

, a 6= 0.

Thus, also using linear equations we can convert music in-

formation to CSS properties to see different visual rendi-

tions of the same musical piece. Not only by varying the

coefficients, but also by varying the mapped sound proper-

ties.

To this task we choose the MIDI file format as the input of

this inverse mapping with the notes presented in Figure 1.

MIDI protocol has the NOTE ON event that contains the

MIDI note number (pitch), the velocity (dynamics), and its

own onset time. Lastly, with the respective NOTE OFF

event we can compute the duration of the note. With these

data in hands we can convert the notes from a melodic se-

quence to elements in a HTML page. For instance, a sim-

ple conversion with duration to width, velocity to height,

pitch to top, and onset to left, can generate a HTML page

that is similar to a piano roll. In Figure 2 we have the

x axis representing time and the y axis representing pitch

(just like the piano roll), but we also have the height of

the boxes showing different dynamics (the taller ones came

0, 0, Header, 1, 1, 120

1, 0, Start track

1, 0, Control c, 0, 7, 127

1, 0, Tempo, 600000

1, 0, Program c, 0, 0

1, 0, Note on c, 0, 60, 120

1, 200, Note off c, 0, 60, 0

1, 200, Note on c, 0, 62, 110

1, 450, Note off c, 0, 62, 0

1, 450, Note on c, 0, 64, 100

1, 600, Note off c, 0, 64, 0

1, 600, Note on c, 0, 65, 90

1, 850, Note off c, 0, 65, 0

1, 850, Note on c, 0, 67, 80

1, 1000, Note off c, 0, 67, 0

1, 1000, Note on c, 0, 69, 70

1, 1250, Note off c, 0, 69, 0

1, 1250, Note on c, 0, 71, 60

1, 1400, Note off c, 0, 71, 0

1, 1400, Note on c, 0, 72, 50

1, 1650, Note off c, 0, 72, 0

1, 1650, End track

0, 0, End of file

Figure 1. A C major scale presented as a CSV file.

from notes with higher velocities).

Figure 2. The visualization of a C major scale using the

mapping: duration to width, velocity to height, pitch to top,

and onset to left.

Other mappings can be explored, creating visualizations

that are not so familiar (or traditional) as the piano roll,

but that contain all the original information from the music

piece, which is still easily recoverable. Figures 3, 4 and 5

show three alternative renderings of the same C major scale

displayed at Figure 2 (the mapped properties are indicated

in the respective captions).

The renderings displayed at the first three figures, we

used width, height, top and left properties. Using only

these four CSS rules, the musical attributes of the origi-

nal song established the dimensions and positions of the

HTML elements in a direct and explicit way. Observe

that in Figure 3 higher pitches produced taller rectangles,

longer durations made wider rectangles, bigger velocities

placed the elements further down, and later onset times put
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Figure 3. The visualization of a C major scale using the

mapping: pitch to height, duration to width, velocity to top,

and onset to left.

Figure 4. The visualization of a C major scale using the

mapping: pitch to height, duration to top, velocity to left,

and onset to width.

the elements farther to the right. In Figure 4 higher pitches

produced taller rectangles also, longer durations put the el-

ements further down, bigger velocities placed the elements

farther to the right, and later onset times made wider rect-

angles.

One interesting feature of the chosen CSS properties is

that we can use padding (internal gap) to control both di-

mensions of the HTML elements at the same time. In Fig-

ure 5 we can see that all displayed elements are squared,

because we mapped duration to padding (observe that with

longer durations, the squares became larger). Another fea-

ture is that we can use margin (external gap) to control

together the vertical and horizontal displacement of the

elements. Notice that in Figure 5 all HTML nodes are

placed in a diagonal, because we mapped onset time to

margin (then, with later onset times, the elements are fur-

ther shifted to the lower right corner). Lastly, in Figure 5

once more, we mapped velocity to border-width, so we

have thicker borders when the notes have faster attacks.

3.2 From audio to Image

When working with image sonification we did a data ab-

straction in which we used the image’s pixels as the au-

dio’s samples. This was done using a flattened version of

the image (which is normally represented by a matrix) to

obtain an one-dimensional array of bytes for the audio. We

only had to make some choices regarding if the image had

3 bytes per pixel (RGB images) or 1 byte per pixel (gray-

scale images).

Figure 5. The visualization of a C major scale using the

mapping: pitch to top, duration to padding, velocity to

border-width, and onset to margin.

This abstraction works in the reverse order: we can use

the audio’s samples as the image’s pixels. To use the bytes

of the audio as the bytes of the image we need first to

choose a value for image’s width to be able to perform a

reshape. Thus, we can convert a one-dimensional array to

a 2D data structure. Again we have to be extra careful with

the two basic types of images: RGB and gray-scale. More-

over, usually we have audio files with 16 bits per sample

(Compact Disc standard), and this value does not match

directly with 24-bit pixels, nor with 8-bit pixels.

For simplicity, we can consider an audio with 8 bits being

transformed to a gray-scale image. The Figure ?? shows an

image generated from an audio file containing a 210Hz si-

nusoid lasting 1 second (adding up 44,100 samples). The

width of the image - 210 pixels - was chosen to put one

complete period of the sinusoid per row of the image ma-

trix. This choice aligned the pixels in a way that make the

periodic pattern visually quite prominent.

Figure 6. A 8-bit wave file of a 210Hz sinusoid lasting 1

second in 44100Hz mapped to a image with 210 pixels of

width.

A similar conversion has been made with an audio file

containing a 441Hz sinusoid lasting 10 seconds (adding up

441,000 samples). The chosen width for the image was

1000 pixels (then the height is equal to 441 pixels). Thus,

we get ten complete periods of the sinusoid per row. Again,

Proceedings of the 11th International Conference of Students of Systematic Musicology

54



there is an alignment of the pixels making the periodic pat-

tern easily seen (as we can verify in the Figure ??).

Figure 7. A 8-bit wave file of a 441Hz sinusoid lasting 10

seconds in 44100Hz mapped to a image with 1000 pixels

of width.

Next, we tried musical pieces with richer spectrum. For

instance, we concatenated two audios (a bass line with 7.5

seconds, and a guitar chord progression with 15 seconds)

following the AABAAB pattern, and resulting in a 60 sec-

onds audio (2,646,000 samples). Then, we convert it to a

squared image (width = height = 1627 ⇡ p
2, 646, 000)

filling in the matrix with zeros when the bytes from the

audio ended. In Figure 8 we can clearly see some visual

patterns, and we can even recognize that they are repeated

(we placed some white lines marking the start and the end

of each segment).

Figure 8. A 60 second audio file with subdivisions follow-

ing the AABAAB pattern converted to a squared image.

In order to generate colored images, we did an alternative

code that receives three 8-bit audios as input. It converts

each audio file to a gray-scale image, and afterwards each

image is assigned to a different color channel: the first im-

age to Red channel, the second one to Green, and the third

to Blue. Figure 9 shows four images: the first three ones

are the gray-scale images generated from 882Hz, 441Hz,

220.5Hz sinusoids, and the last one is the RGB image gen-

erated from the three images above. Observe that the lighter

colors in the RGB image are placed where the three gray-

scale images are white, and the darker colors are placed

where the three images above are black. We are also able

to identify where each one of them is active alone (columns

where the RGB image have red, green or blue colors), and

even where they are active in pairs (columns where the

RGB image have magenta, cyan or yellow colors).

Figure 9. Three audio files being converted to a RGB im-

age, each one being mapped to a different color channel.

These color combinations reflect the energy distributions

in the original audio files. For instance, the points where

the RGB image is white are the ones where the three audio

files have energy peaks at the same time. The points where

the pixels are black as the ones where the audios have en-

ergy valleys. Each other possible color can tell us which

image was lighter at that point, thus it tells which audio

had higher energy at the relative time.

3.3 From score to Text

When working with text sonification we implemented an

algorithm that produces a melodic sequence mapping let-

ters to notes. Because we were working with texts from

web sites, we considered the most frequent letters in En-

glish to create the mappings. In this text to melody algo-

rithm, we used the first twelve most frequency letters to de-

termine the notes’ pitches, the next eight ones to determine

notes’ durations (from 64th to double whole), one letter to

produce rests and other letter to add a dot to a note [9].

In order to implement the inverse mappings for this soni-

fications process, we considered the MusicXML format,

mainly because it has notes’ durations by value. If we used

MIDI, as in the audio to HTML mapping, we need to per-

form a quantization of the notes’ durations in milliseconds

to figure out their values, which is a delicate process prone

to errors.

In Figure 10, we can see a typical note in MusicXML

syntax, and three arrows pointing out the mappings: the
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<note>
<pitch>
<step>C</step>�! E
<octave>4</octave>�!,
</pitch>
<type>eighth</type>�! m
...

</note>

Figure 10. Example of a single note from a MusicXML

score.

p E , R , 0 , T , S , C , D , E -

p E - R - 0 - T - S - C - D - E .

Figure 11. A pitch shifting performed in a C major scale

from the fourth octave (represented by the char ‘,’) to the

fifth octave (represented by the char ‘-’).

C pitch is mapped to the ’E’ character; the 4th octave is

mapped to ’,’ (whose ASCII value modulus 10 is 4); and

the eighth-note is mapped to ’m’. A basic C major scale

in the fourth octave - C4, D4, E4, F4, G4, A4, B4, C5 -

with all durations as quarter-notes is mapped to the string:

“pE,R,0,T,S,C,D,E-” (the “p” char appears once, because

all notes have the same duration; if the last four notes were

8th-note the score would be “pE,R,0,T,mS,C,D,E-”).

This conversion from MusicXML to text has the poten-

tial to generate a symbolic sequence that can be easily

compared. Computing the longest common subsequence

(LCS), for instance, we can check the differences between

two melodic lines. The LCS algorithm can show us varia-

tions such as additions, deletions and substitutions of char-

acters from one sequence to the other. In the context of the

text sequences that we generate from MusicXML files, this

editions can mean a change in pitch, but also a change in

the octave, or duration, or rest, etc.

In Figure 11 we have an example of a pitch shifting being

performed in a C major scale from C4 to C5, changing it

to a C major scale from C5 to C6. In Figure 12 we have an

example of a time stretching being performed in a C major

scale, changing all quarter-notes to eighth-notes. And in

the Figure 13, we have samples for the three types of edi-

tions that we mentioned before: the deletion of a D4 note,

p E , R , 0 , T , S , C , D , E -

m E , R , 0 , T , S , C , D , E -

Figure 12. A time stretching performed in a C major scale

from quarter-notes (represented by the char ‘p’) to eighth-

notes (represented by the char ‘m’).

p E , R , 0 , T , S , C , D , E -

p E , 0 , T E , , S , C , T , E -

Figure 13. The deletion of a D4 note (represented by

“R,”); the addition of a C4 note (represented by “E,”); the

substitution of a B4 note (represented by “D,”) by a F4 note

(represented by “T,”).

the addition of a C4 note, and the substitution of a B4 note

by a F4 note.

4. DISCUSSION

The visualization of a score is a common way to extract

data from music. Normally, visual music representation

uses a common approach: x axis representing time and y
axis representing pitch. This common approach is present

in traditional scores, piano rolls and also in graphs plotted

using symbolic music.

Our representations are probably out of this common ap-

proach and for this reason it can be weird, interesting, or

useful, just because it explores different relations, repre-

sentations, and mappings from the conventional approaches

to display musical data.

We think these visualizations as part of a creative pro-

cess, a combinational creativity [10] based on structural

mapping from one parameter in sound to other parameters

in visual content. Certainly, this is not a definitive form,

a one-size-fits-all solution, and there are too much more

to be experimented. The only certain we have is that our

approach is a little bit out of formal methods to think vi-

sual music and we think it as an aesthetic form to visualize

music.

The methods presented here are probably more suitable to

bring some intuition about the music visually represented,

or to open a discussion about other music formats, other

ways to represent music and which music attribute is re-

ally intuitively represented in a graph. Furthermore, it can

blur the frontier between web content and music content

exposing common attributes from both sides.

If the images presented here can be useful to help some-

one to understand and analyze music, one can advocate

that it can be possible to do the same work just listening to

the music. In fact, it is, specially if you have good trained

ears to to it. But if we intend to have a pervasive form to

store the analysis, to teach it, to write about it, and to share

it, it can be useful to think about music writing and vi-

sualization. Contemporary composers are always looking

for other forms to write music than the traditional scores.

Maybe we can inspire them to find new representations.

5. CONCLUSION

In 1857, the Frenchman

´

Edouard-L´eon Scott de Martinville

invented the Phonautograph, the first device invented to

record music. This equipment had an interesting feature:

it records music but can not play it. The result of a record,
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called phonautograms, could be used only to analyze mu-

sic in a visual form.

With the advent of the computer, it was possible to create

software to music analysis that are faster and more precise

than that performed by human beings. Altogether, com-

puter analysis do not replace human sensibility to under-

stand and interpret music.

Nowadays, we have some different formats to represent

and visualize music and every each format can present a

kind of information that can be complementary to other

representation and it is interesting to use more than one

format to reach a better comprehension of a music piece.

Thinking about web content and starting from web soni-

fication, we created a few mapping algorithms to music

visualization based on common structured formats.

We considered all of the renderings very interesting and

expressive. And they are just a glimpse of what the con-

versions, like MIDI to HTML code, are capable of doing.

In this particular case, the actual coefficients of the lin-

ear mappings are chosen by the user, so this tool have an

enormous potential that even the developers have not yet

explored in full.

The three conversion tools that are presented in this paper

are hosted at the following links:

• https://github.com/rppbodo/midi2html

• https://github.com/rppbodo/musicxml2text

• https://github.com/rppbodo/audio2image
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